

Welcome to Jujuna’s documentation!

At HUNT Cloud [https://www.ntnu.edu/huntgenes/hunt-cloud], we run our
scientific services based on OpenStack orchestrated by Juju. Such cloud
deployments rely on a large set of collaborative softwares, and upgrades can
sometimes cause considerable pain. We are therefore introducing Jujuna - a tool
to simplify the validation of Juju-based OpenStack upgrades.

New to Juju [https://jujucharms.com/]? Juju is a cool controller and agent
based tool from Canonical to easily deploy and manage applications (called
Charms) on different clouds and environments (see
how it works [https://jujucharms.com/how-it-works] for more details).

Jujuna validates OpenStack upgrades from a specific Juju bundle to a new
predefined set of charm revisions and software versions. First, Jujuna
automates the deployment of a specific OpenStack Juju bundle into a testing
stack. Next, it automates the upgrade process to a new set of specific software
versions, including rolling upgrade of HA configurations. Then, it validates
the infrastructure status during and after the deployment. Finally, it can
clean up the deployment.

Quickstart

Installation

To install Jujuna, open an interactive shell and run:

pip3 install jujuna

Note

It is very important to install Jujuna on the Python 3.5 (or higher),
you need it to be installed at least on 3.5 because of the main features
used in Jujuna and it’s dependencies.

	Using Jujuna
	Positional Arguments

	Sub-commands:

	Try our examples
	I have Juju Controller

	I dont’t have Juju controller

	Use cases
	Case 1: Continuous integration

	Case 2: Revision upgrades

	Case 3: Service upgrades

	Writing tests
	Quickstart

	Module index

Modules:

	Deploy

	Upgrade

	Tests

	Clean

Indices and tables

	Index

	Module Index

	Search Page

Using Jujuna

Deploy a local bundle, execute upgrade procedure, run the deployment through a suite of tests to ensure that it can handle the types of operations and failures that are common for all deployments.

usage: jujuna [-h] {deploy,upgrade,test,clean} ...

Positional Arguments

	action

	Possible choices: deploy, upgrade, test, clean

Action to be executed

Sub-commands:

deploy

Deploy a local bundle to the current or selected model

jujuna deploy [-h] [-c CTRL_NAME] [-m MODEL_NAME] [-w] [-t TIMEOUT]
 [--error-timeout ERROR_TIMEOUT] [--endpoint ENDPOINT]
 [--username USERNAME] [--password PASSWORD] [--cacert CACERT]
 [--debug]
 bundle_file

Positional Arguments

	bundle_file

	Path to bundle file (i.e. bundle.yaml)

Named Arguments

	-c, --controller

	Controller (def: current)

	-m, --model

	Model to use instead of current

	-w, --wait

	Wait for deploy to finish

Default: False

	-t, --timeout

	Timeout after N seconds.

Default: 0

	--error-timeout

	Timeout after N seconds in error state.

Default: 1800

	--endpoint

	Juju endpoint (requires model uuid instead of name)

	--username

	Juju username

	--password

	Juju password

	--cacert

	Juju CA certificate

	--debug

	Log level debug.

Default: False

upgrade

Upgrade applications deployed in the current or selected model

jujuna upgrade [-h] [-c CTRL_NAME] [-m MODEL_NAME] [-o ORIGIN]
 [-a [APPS [APPS ...]]] [-i] [-p] [-e] [--upgrade-only]
 [--charms-only] [--upgrade-action UPGRADE_ACTION]
 [--upgrade-params UPGRADE_PARAMS] [--origin-keys ORIGIN_KEYS]
 [--dry-run] [-t TIMEOUT] [-s SETTINGS] [--endpoint ENDPOINT]
 [--username USERNAME] [--password PASSWORD] [--cacert CACERT]
 [--debug]

Named Arguments

	-c, --controller

	Controller (def: current)

	-m, --model

	Model to use instead of current

	-o, --origin

	
	Openstack origin:

	‘cloud:xenial-newton’,
‘cloud:xenial-ocata’,
‘cloud:xenial-pike’,
‘cloud:xenial-queens’,
‘cloud:bionic-rocky’,
‘cloud:bionic-stein’,
‘cloud:bionic-train’,

Default: “”

	-a, --apps

	Apps to be upgraded (ordered)

Default: []

	-i, --ignore-errors

	Ignore errors during charms upgrade and continue with upgrade procedure

Default: False

	-p, --pause

	Pause unit before upgrade (incl. HA)

Default: False

	-e, --evacuate

	Evacuate nova-compute nodes during upgrade

Default: False

	--upgrade-only

	Upgrade using upgrade hooks without changing the revision

Default: False

	--charms-only

	Upgrade only charms without running upgrade hooks

Default: False

	--upgrade-action

	Action name to upgrade application

	--upgrade-params

	Action parameters comma separated e.g. ‘service=name,version=2’

	--origin-keys

	Config keys to set origin in apps e.g. ‘ceph-mon=source,ceph-mon=source’

	--dry-run

	Dry run - only show changes without upgrading

Default: False

	-t, --timeout

	Timeout after N seconds.

Default: 0

	-s, --settings

	Path to settings file that overrides default settings (i.e. settings.yaml)

	--endpoint

	Juju endpoint (requires model uuid instead of name)

	--username

	Juju username

	--password

	Juju password

	--cacert

	Juju CA certificate

	--debug

	Log level debug.

Default: False

test

Test applications in the current or selected model

jujuna test [-h] [-c CTRL_NAME] [-m MODEL_NAME] [-t TIMEOUT]
 [--endpoint ENDPOINT] [--username USERNAME] [--password PASSWORD]
 [--cacert CACERT] [--debug]
 test_suite

Positional Arguments

	test_suite

	Path to test suite (i.e. ceph/suite.yaml)

Named Arguments

	-c, --controller

	Controller (def: current)

	-m, --model

	Model to use instead of current

	-t, --timeout

	Timeout after N seconds.

Default: 0

	--endpoint

	Juju endpoint (requires model uuid instead of name)

	--username

	Juju username

	--password

	Juju password

	--cacert

	Juju CA certificate

	--debug

	Log level debug.

Default: False

clean

Clean the model by removing all applications present in the current or selected model

jujuna clean [-h] [-c CTRL_NAME] [-m MODEL_NAME] [-w] [-f]
 [-i [IGNORE [IGNORE ...]]] [--dry-run] [-t TIMEOUT]
 [--endpoint ENDPOINT] [--username USERNAME] [--password PASSWORD]
 [--cacert CACERT] [--debug]

Named Arguments

	-c, --controller

	Controller (def: current)

	-m, --model

	Model to use instead of current

	-w, --wait

	Wait for deploy to finish

Default: False

	-f, --force

	Force cleanup (remove all machines in the model).

Default: False

	-i, --ignore

	Apps to be ignored during removal

Default: []

	--dry-run

	Dry run - only show changes without removing applications

Default: False

	-t, --timeout

	Timeout after N seconds.

Default: 0

	--endpoint

	Juju endpoint (requires model uuid instead of name)

	--username

	Juju username

	--password

	Juju password

	--cacert

	Juju CA certificate

	--debug

	Log level debug.

Default: False

Try our examples

In the examples folder you can find a minimal OpenStack bundle (includes
only Keystone and database) and a test suite.

Testing the bundle requires a working juju controller, in case you don’t
have one, you can try our vagrant configuration.

I have Juju Controller

First you deploy the Openstack bundle, with older version of keystone
(Newton):

jujuna deploy minimal-openstack.bundle.yaml -w

When deploy is done, you can try upgrading Keystone to the next version
(Ocata):

jujuna upgrade -o cloud:xenial-ocata -p -a keystone

After the upgrade you want to test our services with a test suite:

jujuna test minimal-openstack.test.yaml

If the tests were successful you can continue in the pipeline with
upgrading to higher versions (Pike, Queens,…) or you can cleanup
the model and remove all the applications:

jujuna clean -w

I dont’t have Juju controller

If you don’t have a working juju controller available. Deploying one locally
on your device can be a choice for you when trying out jujuna:

cd examples && vagrant up

Connect to vagrant:

vagrant ssh

You can try to run juju status to make sure that the lxd controller is
deployed properly.

When you are in vagrant, you can deploy our example Openstack bundle, with
older version of keystone (Newton):

jujuna deploy /vagrant/minimal-openstack.bundle.yaml -w

When deploy is done, you can try upgrading Keystone to the next version
(Ocata):

jujuna upgrade -o cloud:xenial-ocata -p -a keystone

After the upgrade you want to test our services with a test suite:

jujuna test /vagrant/minimal-openstack.test.yaml

If the tests were successful you can continue in the pipeline with
upgrading to higher versions (Pike, Queens,…) or you can cleanup
the model and remove all the applications:

jujuna clean -w

When you are done with testing you can exit the vagrant.

Use cases

Jujuna provides four main functions that allow us to assemble various
pipelines and test multiple scenarios: deploy, upgrade, test, and cleanup.
These functions allow us to properly test software upgrades, from simple
tests up to multistage upgrades.

[image: _images/jujuna_upgrade.png]
We use Jujuna for three main purposes at HUNT Cloud [https://www.ntnu.edu/huntgenes/hunt-cloud], all to test desired
deployments and service upgrades of OpenStack. We utilize a dedicated stack of
test hardware, with very similar configuration to our production site. We
deploy the OpenStack Juju bundle with all the applications that we have in
production, although at a smaller scale.

Case 1: Continuous integration

Test of configuration changed as a part of bundle repository CI. Everytime the
Juju bundle is changed it is automatically deployed and tested. All the results
are pushed back to our CI. Passing result from pipeline approves the change.

Case 2: Revision upgrades

New charm revisions are released more often than the services. Release time
also depends on channels that charm developers use. You can regularly run
Jujuna to test new or nightly releases from edge channel of charm revisions.

Case 3: Service upgrades

Test before upgrade. Whenever there is need to upgrade production services,
you can easily deploy your test stack, upgrade required services, and run
your testing suite. We find both upgrade processes and testing useful to
identify potential issues.

Writing tests

Examples and guides on how to write test suites for jujuna.

	Quickstart

	Module index
	File module

	Mount module

	Network module

	Package module

	Process module

	Service module

	User module

Quickstart

Format: yaml

Example 1 - Bundle of glance and openstack:

glance:
 service:
 glance-api:
 status: 'running'
 glance-registry:
 status: 'running'
 process:
 glance-api: True
 network:
 port:
 '9292': True
mysql-db:
 service:
 mysql:
 status: 'running'

Module index

	File module
	Notation

	Examples

	Parameters

	Mount module
	Notation

	Examples

	Parameters

	Network module
	Notation

	Examples

	Parameters

	Package module
	Notation

	Examples

	Parameters

	Process module
	Notation

	Examples

	Parameters

	Service module
	Notation

	Examples

	Parameters

	User module
	Notation

	Examples

	Parameters

File module

Notation

file:
 'path1':
 param1: value1
 param2: value2
 param3: value3
 'path2':
 param1: value1
 param2: value2

Examples

File /etc/passwd exists and is owned by root:

file:
 '/etc/passwd':
 st_uid: 0
 st_gid: 0
 is_reg: True

Parameters

	Parameter

	Type

	Comments

	st_mode

	
	File type and mode

	st_ino

	
	

	st_dev

	
	

	st_nlink

	
	

	st_uid

	int

	Owners uid

	st_gid

	int

	Owners gid

	st_size

	int

	File size

	st_atime

	
	

	st_mtime

	
	

	st_ctime

	
	

	is_dir

	Boolean

	Is path a dir

	is_chrv

	
	

	is_blk

	
	

	is_reg

	Boolean

	Is path a file

	is_fifo

	Boolean

	Is path a fifo

	is_lnk

	Boolean

	Is path a link

	is_sock

	Boolean

	Is path a socket

	imode

	
	

	ifmt

	
	

Mount module

Notation

mount:
 regex:
 - 'path/sda1-[a-z0-9]+-[0-9]+'
 - 'path/sda2-[a-z0-9]+-[0-9]+'
 - 'path/sda3-[a-z0-9]+-[0-9]+'

Examples

Check if lxd/containers/juju-2g34g34-1 is mounted:

mount:
 regex:
 - 'lxd/containers/juju-[a-z0-9]+-[0-9]+'

Parameters

	Parameter

	Type

	Comments

	regex

	str

	Match regex string in mounts

Network module

Network exporter is sourcing /proc/net/tcp for information about interfaces
and ports attached.

Notation

network:
 port:
 - port_num1
 - port_num2
 - port_num3

Examples

Check if:

network:
 port:
 - 6789
 - 22

Parameters

	Parameter

	Type

	Comments

	port

	list

	Check list of port numbers (int) whether attached

Package module

Notation

package:
 - 'pkg_name1'
 - 'pkg_name2'
 - 'pkg_name3'

Examples

Check if:

package:
 - 'ceph'
 - 'ceph-common'
 - 'lxd'
 - 'lxd-client'

Parameters

	Parameter

	Type

	Comments

	pkg_name

	str

	Check package name if installed

Process module

Listing /proc for running processes.

Notation

process:
- '/usr/bin/service'

Examples

Check if:

process:
- '/usr/bin/ceph-mon'

Parameters

	Parameter

	Type

	Comments

	service

	str

	Check process name if running

Service module

Systemd services. Works with dbus python module.

Notation

service:
 service-name:
 status: 'running'

Examples

Check if:

service:
 ceph-mon:
 status: 'running'

Parameters

	Parameter

	Type

	Comments

	name

	str

	Match service status

User module

Notation

user:
 user1:
 group: 'user1'
 dir: '/home/user1'

Examples

Check if:

user:
 ceph:
 group: 'ceph'
 dir: '/var/lib/ceph'

Parameters

	Parameter

	Type

	Comments

	user

	str

	User existing in pwd file

	uid

	int

	User’s uid

	gid

	int

	User’s gid

	group

	str

	User’s group name

	dir

	str

	Path to user’s homedir

	gecos

	str

	A general information about the account

	shell

	str

	User’s shell

Deploy

	
jujuna.deploy.deploy(bundle_file, ctrl_name='', model_name='', wait=False, endpoint='', username='', password='', cacert='', error_timeout=None, **kwargs)

	Deploy a local juju bundle.

Handles deployment of a bundle file to the current or selected model.

Connection requires juju client configs to be present locally or specification of credentialls:
endpoint (e.g. 127.0.0.1:17070), username, password, and model uuid as model_name.

	Parameters

	
	bundle_file – juju bundle file

	ctrl_name – juju controller

	model_name – juju model name or uuid

	wait – boolean

	endpoint – string

	username – string

	password – string

	cacert – string

Upgrade

	
jujuna.upgrade.upgrade(ctrl_name=None, model_name=None, apps=[], origin='', ignore_errors=False, pause=False, evacuate=False, charms_only=False, upgrade_only=False, upgrade_action='', upgrade_params={}, origin_keys={}, dry_run=False, settings=None, endpoint='', username='', password='', cacert='', **kwargs)

	Upgrade applications deployed in the model.

Handles upgrade of application deployed in the specified model. Focused on openstack upgrade procedures.

Connection requires juju client configs to be present locally or specification of credentialls:
endpoint (e.g. 127.0.0.1:17070), username, password, and model uuid as model_name.

	Parameters

	
	ctrl_name – juju controller

	model_name – juju model name or uuid

	apps – ordered list of application names

	origin – target openstack version string e.g. ‘cloud:xenial-ocata’

	ignore_errors – boolean

	pause – boolean

	evacuate – boolean

	charms_only – boolean

	upgrade_only – boolean

	upgrade_action – string

	upgrade_params – dict

	origin_keys – dict

	dry_run – boolean

	endpoint – string

	username – string

	password – string

	cacert – string

Tests

Jujuna tests are designed to validate configuration of infrastructure in a fast
way. It is able to discover many common issues, that do not appear in Juju
status or during upgrade procedure.

Test suite is a declarative config of infrastructure. Status is declared by
referencing brokers and their variables.

Brokers are modules that are using exporters to extract specific information
from units. They represent important system values.
Exporters are modules that read and export information from units to brokers.
There the information is evaluated.

Test brokers/exporters (named respectively):

	api

	file

	mount

	network

	package

	process

	service

	user

	
jujuna.tests.test(test_suite='', ctrl_name='', model_name='', endpoint='', username='', password='', cacert='', **kwargs)

	Run a test suite against applications deployed in the current or selected model.

Applications are tested with declarative parameters specified in the test suite using the available brokers.

Connection requires juju client configs to be present locally or specification of credentialls:
endpoint (e.g. 127.0.0.1:17070), username, password, and model uuid as model_name.

	Parameters

	
	test_suite – suite file (Yaml)

	ctrl_name – juju controller

	model_name – juju model name or uuid

	endpoint – string

	username – string

	password – string

	cacert – string

Clean

	
jujuna.clean.clean(ctrl_name='', model_name='', ignore=[], wait=False, force=False, dry_run=False, endpoint='', username='', password='', cacert='', **kwargs)

	Destroy applications present in the current or selected model.

Connection requires juju client configs to be present locally or specification of credentialls:
endpoint (e.g. 127.0.0.1:17070), username, password, and model uuid as model_name.

	Parameters

	
	ctrl_name – juju controller

	model_name – juju model name or uuid

	ignore – list of application names

	wait – boolean

	force – boolean

	dry_run – boolean

	endpoint – string

	username – string

	password – string

	cacert – string

 Python Module Index

 j

 		 	

 		
 j	

 	[image: -]
 	
 jujuna	

 	
 	
 jujuna.clean	

 	
 	
 jujuna.deploy	

 	
 	
 jujuna.tests	

 	
 	
 jujuna.upgrade	

Index

 C
 | D
 | J
 | T
 | U

C

 	
 	clean() (in module jujuna.clean)

D

 	
 	deploy() (in module jujuna.deploy)

J

 	
 	jujuna.clean (module)

 	jujuna.deploy (module)

 	
 	jujuna.tests (module)

 	jujuna.upgrade (module)

T

 	
 	test() (in module jujuna.tests)

U

 	
 	upgrade() (in module jujuna.upgrade)

 _static/comment-bright.png

_images/jujuna_upgrade.png
Multiple
upgrades

e e

Newton Jujuna test Jujuna clean
Ocata

Pike
Queens
Rocky.

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Jujuna’s documentation!

 		
 Using Jujuna

 		
 Positional Arguments

 		
 Sub-commands:

 		
 deploy

 		
 upgrade

 		
 test

 		
 clean

 		
 Try our examples

 		
 I have Juju Controller

 		
 I dont’t have Juju controller

 		
 Use cases

 		
 Case 1: Continuous integration

 		
 Case 2: Revision upgrades

 		
 Case 3: Service upgrades

 		
 Writing tests

 		
 Quickstart

 		
 Module index

 		
 File module

 		
 Mount module

 		
 Network module

 		
 Package module

 		
 Process module

 		
 Service module

 		
 User module

 		
 Deploy

 		
 Upgrade

 		
 Tests

 		
 Clean

_static/up-pressed.png

_static/up.png

_static/plus.png

